Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats

نویسندگان

  • Jun Haruma
  • Kiyoshi Teshigawara
  • Tomohito Hishikawa
  • Dengli Wang
  • Keyue Liu
  • Hidenori Wake
  • Shuji Mori
  • Hideo Kohka Takahashi
  • Kenji Sugiu
  • Isao Date
  • Masahiro Nishibori
چکیده

Although delayed cerebral vasospasm (DCV) following subarachnoid hemorrhage (SAH) is closely related to the progression of brain damage, little is known about the molecular mechanism underlying its development. High mobility group box-1 (HMGB1) plays an important role as an initial inflammatory mediator in SAH. In this study, an SAH rat model was employed to evaluate the effects of anti-HMGB1 monoclonal antibody (mAb) on DCV after SAH. A vasoconstriction of the basilar artery (BA) associated with a reduction of nuclear HMGB1 and its translocation in vascular smooth muscle cells were observed in SAH rats, and anti-HMGB1 mAb administration significantly suppressed these effects. Up-regulations of inflammation-related molecules and vasoconstriction-mediating receptors in the BA of SAH rats were inhibited by anti-HMGB1 mAb treatment. Anti-HMGB1 mAb attenuated the enhanced vasocontractile response to thrombin of the isolated BA from SAH rats and prevented activation of cerebrocortical microglia. Moreover, locomotor activity and weight loss recovery were also enhanced by anti-HMGB1 mAb administration. The vasocontractile response of the BA under SAH may be induced by events that are downstream of responses to HMGB1-induced inflammation and inhibited by anti-HMGB1 mAb. Anti-HMGB1 mAb treatment may provide a novel therapeutic strategy for DCV and early brain injury after SAH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycyrrhizic acid confers neuroprotection after subarachnoid hemorrhage via inhibition of high mobility group box-1 protein: a hypothesis for novel therapy of subarachnoid hemorrhage.

Subarachnoid hemorrhage usually results in poor clinical outcome and devastating neurological deficits. The early brain injury and delayed vasospasm after subarachnoid hemorrhage (SAH) are involved in the poor prognosis to the patients, while the mechanisms have not been well elucidated. Previous studies found an up-regulation of Toll-like receptor 4 (TLR4), inflammatory factors and high-mobili...

متن کامل

Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats

As one of the most lethal stroke subtypes, intracerebral hemorrhage (ICH) is acknowledged as a serious clinical problem lacking effective treatment. Available evidence from preclinical and clinical studies suggests that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain injury. High mobility group box-1 (HMGB1) is a ubiquitous and abundant nonhistone DNA-bind...

متن کامل

CORRELATION BE TWEEN ENDOTHELIAL INJURY AND CEREBRAL VASOSPASM FOLLOWING A DOUBLE SUBARACHNOID HEMORRHAGE IN THE RAT

While a wide array of pathological changes occur in cerebral arteries following subarachnoid hemorrhage (SAH), the most consistent is endothelial damage. Since the endothelium normally modulates reflexes that influence vascular tone, any damage to it may represent a significant contributor to cerebral vasospasm following SAH. This experimental study investigates the correlation between end...

متن کامل

Purpurogallin, a Natural Phenol, Attenuates High-Mobility Group Box 1 in Subarachnoid Hemorrhage Induced Vasospasm in a Rat Model

High-mobility group box 1 (HMGB1) was shown to be an important extracellular mediator involved in vascular inflammation of animals following subarachnoid hemorrhage (SAH). This study is of interest to examine the efficacy of purpurogallin, a natural phenol, on the alternation of cytokines and HMGB1 in a SAH model. A rodent double hemorrhage SAH model was employed. Basilar arteries (BAs) were ha...

متن کامل

Memantine Attenuates Delayed Vasospasm after Experimental Subarachnoid Hemorrhage via Modulating Endothelial Nitric Oxide Synthase

Delayed cerebral vasospasm is an important pathological feature of subarachnoid hemorrhage (SAH). The cause of vasospasm is multifactorial. Impairs nitric oxide availability and endothelial nitric oxide synthase (eNOS) dysfunction has been reported to underlie vasospasm. Memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) blocker has been proven to reduce early brain injury afte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016